Inferno on Earth: Wildfires Spreading as Temperatures Rise

Janet Larsen


Future firefighters have their work cut out for them. Perhaps nowhere does this hit home harder than in Australia, where in early 2009 a persistent drought, high winds, and record high temperatures set the stage for the worst wildfire in the country’s history. On February 9th, now known as “Black Saturday,” the mercury in Melbourne topped 115 degrees Fahrenheit (46.4 degrees Celsius) as fires burned over 1 million acres in the state of Victoria—destroying more than 2,000 homes and killing more than 170 people, tens of thousands of cattle and sheep, and 1 million native animals.

[social_buttons]Even as more people move into fire-prone wildlands around the world, the intense droughts and higher temperatures that come with global warming are likely to make fires more frequent and severe in many areas. (See table of regional observations and predictions) For southeastern Australia, home to much of the country’s population, climate change could triple the number of extreme fire risk days by 2050.

Although fires typically make the news only when they grow large and put lives or property at risk, on any given day thousands of wildfires burn worldwide. Fire is a natural and important process in many ecosystems, clearing the land and recycling organic matter into the soil. Some 40 percent of the earth’s land is covered with fire-prone vegetation. A number of plants—such as giant Sequoia trees and certain prairie grasses—need fire to propagate or to create the right conditions for them to flourish.

Fire patterns have changed over time as human populations have grown and altered landscapes by clearing forests, allowing pasture animals to overgraze grasslands, and importing new plant species. Across parts of the western United States, for example, cheatgrass, an invasive annual adapted to frequent burns, has supplanted native brush, desert shrub, and perennial grasses that typically experience longer intervals between fires. In other areas, mixed-age and mixed-species forests have been replaced by single-species plantations where flames can jump easily from tree to tree. The result, instead of a low-intensity restorative fire, is a fire so hot that it can cause lasting harm to soils.

Humans have also altered fire patterns through deliberate suppression. After 1910, when a severe wildfire charred more than 3 million acres of western U.S. forest in just two days, the strong desire to protect timber resources gave life to a policy of quickly extinguishing fires. For decades firefighters proved remarkably successful in this endeavor, but the upshot was that forests became so loaded with fuel that a blaze that evaded control could quickly grow into a dangerous megafire.

Now policies are shifting in many places to let some fires proceed naturally or through preventative controlled burns; yet by warming the planet, we may be relinquishing even more control than we bargained for. Higher average global temperatures mean extremes are in store: even as climate change brings more flooding in some areas, other places will be plagued by droughts and extended heat waves. As the temperature rose between the 1970s and early 2000s, for instance, the share of total global land area experiencing very dry conditions doubled from less than 15 percent to close to 30 percent. A hotter, drier world burns more readily. Global warming could be pushing us into a new regime of larger, longer-burning, more intense fires as well as fires in places that historically have been hard to ignite, like moist tropical forests.

Already there is evidence of the connection between higher temperatures and wildfire. Anthony Westerling of Scripps Institution and colleagues found a marked uptick in forest fires in the western United States since the mid-1980s, with the wildfire season lengthening by 78 days over the last 15 years compared with the preceding 15 years. The fire season length and the duration of each fire rose in concert with regional spring and summer temperatures, which were an average 0.87 degrees Celsius higher in the later period. Higher temperatures are melting mountain snow cover earlier in the spring, leaving less moisture for the summer and giving fires a better chance to spread. And while human land use certainly has had a direct effect on wildfire patterns throughout the West, the biggest increase in U.S. wildfire frequency has actually occurred in the largely untouched mid-elevation Northern Rockies forests, implicating climate change.

  1. MD

    Are you sure about that?

    The other side to that coin:

    Before we showed up and started mucking about with stopping naturally occurring fires was there fewer fires to begin with?

    And now that we do stop these fires could it be there is an over abundance of combustible materials that would have been regularly dealt with therefore reducing the ability of small fires quickly turning into mega fires.

Leave a Reply

Your email address will not be published. Required fields are marked *